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In this paper we describe the evalyation of a
prababilistic diagrostic system for patienis with
renal mass.  Three inference modefs- Mulii-
membership Bavesion (MB), AMimimal Diagnosis
‘WMD) and Bavesion Nebwork {BN), and 72
putients are uxed to Hlusirate three interrelated
measures af system performancs accuracy,
relfability and discriminating power, The
inferencing stratagies we tested demonstrated the
sl of trade-affs in the performonce measures
et e b expeciad ffom mperfest svstems
Ulnimately, the purpose and expected use af a

velem should dictate the refative imporiance
1scribed o different aspects of system

nerformance,
INTRODUCTION

Medical diagnosis is one of the most
ictiectually challenging processes in medical
mactice.  Hesearchers have long attempled o
epraduce tis hyporhetico-dedociive [rroeess
irough the nse of intet igent compiier progrums
-3l Thauks 1o vigorous research in this area,
evieral such programs have demonstrated
rnseives as potentially usclul tools in clinical
onsultation, medical education, quality
ssurance and clinical data capruring [2,3,5-11].

When constructing a medical dingnostic
rogram, probabilistic models are oflen chosen
| preference to rule-based or heunstically scored
wdels. Several advantages are associated with

is approach. The use of probabilities allows
1€ system (o commurnicate succincily the degree
centainty with which different diseases can be
signed. It wot only predicts the mast likely
agnosis, bul alsa helps to clarfy the relative
stance between the most likely diagnosis and
competitors o addition, probabilistic
ediction of diagnoses provides information that
n be wsed to quantitatively evaluate the
kabenelits (utility) of different work-up and
smpeulic stmtegies [12]. However, before the
shabilities prodiuced by an expert system can

be utilized in these wavs, the quality of the
probabilisuc system has (o be evaluated,

To evaluate a probabilistic system
comprehensively. we believe that three
interrelated parameters should be assessed,
namely, accuracy, reliability and diseriminating
power [13.14] Accuracy describes the ability of
a system Lo assign the highest probability to the
correct diagnosis. In this context, accuracy can
be represented as the fraction of patients
cartectly diagnosed by the system or the non-
error mte (NER),

By reliability we mean the trustwarthiness
of the probabilities suggested by the system.
Maore specifically, how cenfidently can we
translate these probabilitics into the expected
frequencies of the events. For example, when a
reliable meteorologist says that thers 1s a 80%
chance of rin teday, the implication is that mn
will occur in eighty of a hundred days that have
weather conditions similar to fnday

Another imporianl parumecice apart from
relinbibity amd nccomey s the discriminaling
power, which represents the ability of a system
to differentiale between likely and unlikely
giseases. As an example of a nop-discriminative
syslem, consider a diagnosis suggestion list like
"Acule myocardial infarction. 95%, Pulmonary
etnbolus: 94%, Esophageal spasm 929%™ This
formulation would not be helpful 1o the
physician who is trving to differentiale these
competing diagnoses

We believe the three parameters discussed
above are important when evaluating a
probabsilistic system because an inaccurate
system that fauls 1o predict diagnoses comrectly is
not only useless but misleading: an unrelizgble
s¥stem hinders the genermted probabilities from
being used in decision-theoretic analysis and
reduces 15 transfembility, and a system that
does not adequately separale the truly likely
diagnosis from its less likely competitors can he
conlusing and, if believed, wonld carry the nigk
of mereasing the number of tests as phvsicians



soughl to dilTerentiate the diagnoses it marked as
competilors | 5,6]

in tus stody, we demonstrate the use of
simple statistical tests to ascertain the quality of
one dingnostic expert system running under three
different inferencing strategies, mamely, Mulli-
membership Bayesian (MB), Minimal Diagnosis
{MD) and Dayesian Network (BN} [15-17]. The
expert syslem used 15 a probabilistic renal mass
diagnostic system (RMDS) that muns under the
three models. To provide the data set necessary
[or these analyses, we recorded relevant findings
frem 71 renal mass patienis Accuracy,
reliability and discrniminating power were
assessed [or these models as the measures of
systern performance.,

METHODS

Structure of The RMDS

The RMDS was developed using the ILIAD
shell, which is a set of lools Best known as the
foundation of a large diagnostic svstem for
imternal medicing [3.7], Diseases are constructed
as framnes in which the pnor probabilities of the
diseases and the conditional probabilines for
Nindings are embedded.  Several mechamsms
mcluding . multi-level frames have been
implemenied 1 this. sysitem to  handle
conditionally dependent imdimgs [18-21]. When
only. single=level frames are uwsed in the
Enowledpe base, the system belaves as a Muly-
membershup Bavesian program |18, 19]

‘e construcliion of the RMDS uses
prncipally the single-level struciure. It consists
of |8 probabilistic disease frames, each
representing one category of renal mass (Table
1, The number of findings per frame rmnges
from 2 to 23 with an average of 15, Prevalence
rates (pnor pighabilities) of the 18 renal mass
discases weare calculated from a large patient
database. The conditional probabilities Tor
Tindings were estumaled by two senior urologists
In a study 1o venly the validity of REMDS, the
diagnosiie accuracy [or renal mass paticnts was
compared between RMDS and six physicians
The result showed that REMIES performed bener
than the second-yvear residents and was
compatable to chiel residenls tmined in the
uralogy department [22]

Table 1 The distribution of tesl cases mito 18

renal mass diapnoses

Diagnosis it Number of
ot e +in R
1) Renal parenchymal tumors
Angiomyolipoma 4 (6%)
Hemangiopericyloma 0 (0%)
Juxtaglomerular cell wmor 0 (0%)
Lipoma 0 (0%
Lymphohldstoma 4 (6%)
Mewstatic lumor 2 (3%)
Oncocyioma 4 (&%)
Renal cell carcinoma 14 (19%:)
Sarcoma Z2{3%)
Wilms' tumor I {1%:)
2 Tumors of renal pelvis
Benign papilloma 3 {4%)
Uransitional cell carcinoma 17 {24%)
Squamaus cell carcinoma 2(3%)
Adenocarcinoma 2 (3%}
1) Renal ¢yst
Simpe cyst 4 {6%)
Cysladenpearcinoma 0 (0%:)
4) Renal abscess 9 (135)
S Xanthogranulomatous 4 [6%)
pyelonephritis (XGF)
Total 72 (1007%)
Paticnts

Seveniy-two consecudive cases of renal mass
surgically diagnosed 1n the Chung Gung medical
center between May 19859 and Apnl 1992 were
collected as our test cases. Findings [rom
calegories including basic demographic data,
medical history, symptoms and signs, labomstaory
data and radiological diagnostic procedures were
recorded and entered into the system. The [inal
diagnoses of these cases were all confirmed by
pathological examination and were used as the
gald standard diagneses in this study. The
number of findings related to the renal mass
dingnosis ranged from 14 to 30 (average 20 per
case

To explore the chamcteristics of the thiee
models at different stages in the diagnostic
workup, highly specific (and ofien cxpensive)
examinations including renal angiogram,
compuled tomography scan and magnetic




resonance nmaging were removed from each case
to produce 3 vignelle. This vignette was labeled
as "Phase 1" (an average of 1.8 findings were
removed), Cases with a complete set of Andings
were then labeled as “Phase 2" vignettes,

The Three Inferencing Models

EMDS is based on a set of single-level
frames constructed using the [LIAD shell. Twao
of the three inferencing models studied are
standard <teptegies supported by the [LTAD shell
The [first of these ic a Nulti-membership
Bayesion model (MB} In the MB model,
discases are treated completely independently
Experience with such Multi-membership
Bavesian diagnostic programs sugpested that
they frequently over-estimate the probabilities of
diagnoses when Llrving 1o assess a sst of
competing diagnoses. Recenl theoretic work
sugaests (hot this wvpe of mode! dees not truly
reflect the joint distribution of the diseases and
data in the system [16,17] Instead, this model
[alsely assumes that the independence among
diseases mamfesting the same findings is
maintained when those findings are known (o be
present. The resull is that each disense receives
gil the information available 1o i from a shared
finding, No flinding can gver be thought of as
“explained” by onc member of n disease sel
Thus, the Tinding “bone pain or lendemess®
woilld still contribute a full compliment of
evidence to “renad cell carcinoma® after renal
srcoing’ 15 proven

Bavesian (heorists describe the conditianed
dependence of one disease on another
eouditionsd on a shired. instaniiated finding) as
“d-separtion”, Inorder (o simulale the effects
of d-separation in ILIAD, we have developed a
madel knawn as the “Minimal Diagnosis” (MO,
I'is model selects and remaves from the case a
single high probability diagnosis which explains
a large fraction of Lhe patiemt findings. The
remaining, "unexphined” findings produce a
residunl differential diagnosis designed 1o
explain the remalning Mndings. This process was
then repeated Hermtively umtil all the important
findings are attributed to particular disease
by pothieses

While the MDD ntodel provides one approach
to d-separation, it represents an extremely
agpressive way of assigning the information
associated with clinical data, Bayesian Networks
represent  an  alternatve technique for
prapagating probabilities which 1s thought 1o

handle d-separntion accurately, A Bayesian
Network, also called belief network or
probabilistic causal network, is a graphical
representation of probabihistic dependencies
among variables [23] More specifically, a
Bayesian MNetwork is a directed acychic graph in
which each node represents o mandom variable,
The arrows in the graph often denote direct
causal influences between variables, where the
strength of the influence is specified by tables of
conditionsl probabilities [16]

We were able to capitalize on structural
similarities between ILTAD s native knowledge
representation and Bayesian Networks lo
develop general tools for converting ILIAD
knowledge base to coherent networks. We used
these tools to convert the RMDS knowledge base
from MB formulation into a BN fermulation
without any additional knowledge engineenng
gffart. This BN formulation became the third
model of RMDS in the performance comparson
descrnibed below

Meagurement of Performance

As described in the introduction seclion, we
have wused accuracy, reliability and
discriminaling power as parameters for
measuring the performance of these three
inferencing stralegies. The non-arror rmte (NER),
wiich is the fraction of patients corrzctly
diagnosed by the system, wis used as the index
al accuracy MeMemar's tesi for non-
independent proportions was used  show (he
statistical significance of the NER's [24],

To measure reliability, we adopted a set of
sintistics descnbed in detail by Habbema et al,
regarding the measurement of performance in
probabilistic diagnosis [13.14]. These slalistics
were arbitranly denoted as Q1 through Q5. 01
is the avernge of the probabilities {over all
patients in the test poputation) that the progam
has assigned to each patient's correct diagnosis,
while Q2 15 defined as the expected value of this
average. Q2 is denved from the probabilities
assigned to all the diseases in all of the cases that
have been processed by the system.  The
dilferemce (1 minus Q21 betwezn chserved and
expecied mean diagnostic probabilities, called
03, reflects the discrepancy between (he
compuler’s average estimate of the probability of
the disease and the expecied value, Apan from
random fluctuations, Q3 averages zero for
perfect relinble systems, If the sample size is not
oo small, the distnbution of Q3 can be




approxitated by a normal distribution, When
Q3 is divided by Q4. which is the slandard
deviation of the distabulion of 3, the resull can
be treated as a Z value from the standard normal
distribution. This Z value is called Q5 in
Habbema notation. 95% of sample values of Q5
fram a perfectly reliable system should be swithin
196 standard deviations from zero, [T the
absolute value of Q5 is greater than 1.96. one
must reject the null bvpothesis that the Program
praduces reliable probabilities. In this shudy, Q5
was used as the index of reliability

The statistic we chose (o represent
discriminating power is called the quadratic
scare  or Brier score [13,14,2526]. The
quadratic score combined 1wo lype of
information; it uses the deviations of the
probabilits fesivned to the patien 5 real dispase
fronn 1.0 and (he deviztion of 1he probabilities
‘I“ii‘[]ﬂf ],.. rt], ds,ui:.g [ha] e D]“':.D dngs DQI
have from 0 to produce a measurs of
discriminating ability.  This value can be
caleulated for individual patients The mean
ver a simiple of test patients measures the
system’s overall discnminating abiluy  This
score would be zero (perfecty diseriminative) if
the prababihity of correat diagnosis were always
assigned | and those of the w rong dingnoses
were assigned zera In the ether extreme, if the
probability o 1he correc dirgnosis were
assigned zero and those of the wrong diagnoses
were assigned | (the most unfavorable situation),
this scare would be equal ta D, where D 15 the
numher of all possible diagnoses in the sysiem
The larger the quadratic score, the less
discriminative the svstem is. A repeiled measum
ANOVA was performed on the quadmtic scores
calculated from the probabilities assigned o each
patient by the three models 1o determine the
significance of differences in discrimunating

power
RESULTS

Table 1 is a list of the diagnoses in RMDS
and the distribution of the 72 test cases across
these diagnoses. Palicnl age mnges from 6 to &0
with an averape of 59 Thiry -four (47%) out of
the 72 patients are female

All of the 3 models (MB, MD and BN} were
compared on the basis of an equivalen
knowledge base and idemtical clinical
information. Table 2 shows the values of NER,
Q5 and quadmnc score in the three models. [n

the analysis of accuracy, all models achieved
NER accuracy greater than 61% in phase | and
69% i phase 2 (Figure la), WMo significant
difference was found among the NER of MB,
MD and EN in either Phase | or Phase 2. Phase
2 demaonstrates a higher NER than Phase 1
because momre informaltion was used in Phase 2,

In the analysis of reliability, MB in phase 2
and MD in both phases resulled in absolute
values of Q3 that were greater than 1.96 (|Q5] >
L.96), and thus should be treated as producing
unrefiable probabilities (Figure 1b). According
(o the vilues of )5, only the BN model was able
o gencrale reliable probabilitics in both phases.

Using quadratic score as an index of
discriminaling power, MDD and BN both showed
better discriminating power (lower quadratic
scores) than MB in both phascs (Figure 1c).
When we analy zed the quadratic scores using
ANOVA, both MD and BN were found 1o have
significantly smaller scores than MB in Phase 1
{P< 0.02) and Phase 2 (P < 0.0001), while no
sigrificant difference was found between MD
and BN 1n either phase,

Table 2 The resulis of non-ermor mee {NER)
Q5 and quadratic score for the thiee inference
models (see also Figure 1)

Accuracy (NER)

MB MD BN |

Phasel | 0.639 0611 0611 |
Phase? | 0,764 0.694 0.722

Relighility (Q5)

MB MD EN

Phasc | -1.70* -3.20 0.91*
Phase2 =2.93 =56 -1.39*

Discriminaiing Power (quadratic score)

MB MD BR
FPhasel (LB72 0.644 0.681
Phase? 1.299 0.580 0484

MEB. Multi-membership Bayesian MD- Minimal
Diagnosis; BN; Bayesian Netwark
* 105 < 1.96




[Bar charts of NER, (25 and quadratic scores for
Muhi-membership Bayesian (MB), Minimal
Diagnosis (MD) and Bayesian Network (BN}
model across Phase 1 (PR 1) and Phase 2 (Ph 2.
(See Table 2 for the exact values)

Figure la Rar chart of the ACCUrcY measure
(NER {nan-errer rate); optimal: 1.0)
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DISCUSSION

Evaluation of clinical decision support
sysiems is a complex issue [27,28], This paper
focuses on the analysis of system behavior using
performance statstics. We believe that when
evaluating a probabilistic diagnostic system,
reliability and discriminating power are ag
important as the accuracy of the system

In this study, these three paramelers wers
assessed to evaluate a probabilistic renal mass
diagnostic system under three models of
infzrence: Multi-membership Bayesian, Minimal
Diagnosis and a Bayesian Network formulation.
All the madels performed comparably in the test
of aveuracy. The MB model, our original
implementation of RMDS, failed (o pass the
reliability test in Phase 2 and showed poor
discnminating power in both phases, MD, by
employing an aggressive d-separation algorithm,
achseved betler disciminating power than MB,
vet sacrificed the ability to generate reliable
probabilities in both phases, Although BN
excelled ‘in the i1ests of reliability and
discrimimiiing power over the other two models,
the complexity of its algorthm made inferencing
much slower than the other models. It ook an
avernpe of 30 scconds 1o fmoa case in sur 300
nodes Bavesian Network on a Maelntash e
compuler. This compares 1o 2 secands for tlie
atlecr bwo models on the same plotfonn,

Based oo these results, none of the three
models has been shown to be perfect, The goals
of n given implementation must, therefote,
diztate the approach chosen. Among the models
we evaluated, MB is not suitable for the
applications where dilferemtiating compeling
diagnoses is crucial because of its low
discrimuinating ability.  The probabilities
genered by the MD model, due (o theis
nneeliability, should not be used a5 a source for
decision-theoretic analvsis where probabilities
arc ircated as expected frequencies. But since
both MB and MD extubit short response time,
either one could be used in applications where
qQuick respanse s important, such as an on-line
consulling sysiem, or they could be used topether
as complementary pans of one system. The BN
model, on the other hand. is most useful when all
Ihe qualities measured are required and where
Immediate response is nol pecessary.  An
example might be a quality control application

Besides the overall better performance on
rehiability and discriminating power, Bayesian




networks can alse pgenerate the expecled
probabilitics of unknown findings. This ability
has not been studied in this experiment but could
patentially be applied in clinical information
acquisition and in clincal predictions. Haowever,
in spite of the many potential benefits of BN
model, the exact inferencing algorithms for
Bayesian networks, such as the one we are using,
are compulational intensive [17]. The number of
calculations needed in these algorithms increases
exponentially with the size and complexity of the
network and thus very large Bayesian networks
are deemed computational intractable [29]
Fortunately, recent research regarding inexact
inferencing algorithms may lead 1o a solution for
this problem [30-33).

The RMDS we evaluated in this study is a
very narmowly defined diagnostic system that
only deals with patients having cenain forms of
renal mass. The relatively small sample size and
the mrity of some of the diseases in this sysiem
rendercd analyses on individual discase
categones inaccessible. This procedure could be
of value in identifying disease-specific problems
ina systeit

Given the archatecture of the ILIAD shell,
where [rames can be built separately and
combined wgether o fomm larger svstems, 1t 5
lemptiong 1o iy asscssing  the perlormance
Slatisties in o more genenic systein with a larger
sample of patients.  However, il would he
challenging 1o obtain a large enough
representalive sample of cases for the evaluation
of such a large svsiem. In addition, the current
algornithm used for the BN model mav nol be
suttable for much larger systems because of
INCTEAsING computation time.

A system that can pencrate probabilities of
diagnoses is appealing because of the versatility
of probability 1tself. But, if (he probahilities
Eencrated from such a systemn lack reliability and
discriminating power. they mean po more than a
list of ranking scores. The three pammeters of

probabilistic systems deseribed in this paper can:

be treated as indices for the usability of such
probabilities. However, as in the case of the
modcls in this study, perfect performance in all
of these parameters may not be easily attainable.
Ultimately, the purpose and expected use of a
system should diciate the relative importance
ascribed 1o different aspects of sysiem
performance.

* This publication was supporied in part by grant
pimber 5 RO LMO5323 from the Mational
Library of Medicine
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